Name: _		
	Hour: _	

DNA Structure Notes

Franklin, Watson, and Crick sign	ificantly changed the mystery of DNA by
discovering the double helix structure a	nd creating a model of DNA that has held up
throughout the years. This discovery of	the structure of DNA was important because
it explained how DNA could serve as	(function determines
structure).	•

Structure of Nucleotide

Each nucleotide has three parts: a phosphate group,	a sugar molecule, and a
nitrogen base. In DNA, the sugar molecule in the nucleotide	s is called
The sugar (deoxyribose) molecule and pl	nosphate group are the
same for each nucleotide, but the nitrogen bases may be any	y of four different kinds.
There are four options for the nitrogen base:	(A), cytosine (c),
(T), and guanine (G). Adenine (A) and gua	nine (G) are classified as
Purines are bulky and contain a double-r	ing carbon and nitrogen.
Cytosine (C) and thymine (T) are classified as	Pyrimidines
are smaller and contain a single ring of carbon and nitrogen) -

There are 4 bases in DNA and RNA

	Pyrimidines	=	Purines =		Sugar
DNA	C =	T =	G=	A =	

Name: _		
	Hour:	

Structure of DNA

DNA is arranged in a		structure (two strands
twisted together) that resembles a win	nding staircase or ladde	r. The sides of the
ladder are made of the	group and	molecules
strung together. The rungs of the ladd	er are made up of two n	itrogen bases paired
together. This double helix structure is	s held together by weak	
bonds between the pairs of bases.		

Function of DNA

DNA is an important macromolecule in all living organisms. Each organism has its own DNA that is _______ to the species to which it belongs. For example, all dogs have the same characteristic DNA. The purpose of DNA is to provide the ______ to make proteins through the process of protein synthesis. This is reflected in the Central Dogma Theory.

Central Dogma Theory

The Central Dogma Theory states that the information in DNA is transferred to an intermediate nucleic acid called ______. The RNA carries that information to the ribosomes to make ______.