Gas Law Notes

Gas Pressure Basics

https://www.youtube.com/watch?v=BJNC4KGLq7E
What is gas pressure?

Gas Pressure flows from \qquad .

Gas Pressure Units

https://www.youtube.com/watch?v=qv81QCGNnVo

mmHg	atm	kPa
torr		

$=$ \qquad
\qquad

The pressure inside a care is 225 kPa . Express this value in both atm and mmHg .

Boyles Law

https://www.youtube.com/watch?v=ZoGtVVu3ymQ

This relationship is \qquad proportional. (as one goes up, the other has to go
\qquad _)

Boyles Law Formula \rightarrow

At 1.70 atm, a sample of gas takes up 4.25L. It the increased pressure on the gas is increased to 2.40atm, what will the new volume be?

Charles Law

https://www.youtube.com/watch?v=olfFoiwRCVE

This relationship is \qquad proportional. (as one goes up, the other has to go
\qquad _)

It is important to note that temperature MUST be in \qquad ! K=273+ ${ }^{\circ} \mathrm{C}$

Charles Law Formula \rightarrow

A balloon takes up 625 L at $0^{\circ} \mathrm{C}$. If it is heated to $80^{\circ} \mathrm{C}$, what will the new volume be?

Gay Lussacs Law

https://www.youtube.com/watch?v=wHD-32rUHkE
The pressure in a sealed can of gas is 235 kPa when it sites at room temperature of $20^{\circ} \mathrm{C}$. If the can is warmed to $48^{\circ} \mathrm{C}$, what will the new pressure inside the can be?

Feel free to do the second problem if you like. Check your work if you do.

Combined Gas Law

https://www.youtube.com/watch?v=bftkRnTcFj8
The combined gas law is unique because it takes all three gas laws and incorporates them into one gas law.

Combined Gas Law Formula \rightarrow

If a certain variable (P, V, or T) is held constant, you can remove that variable entirely from the Combined Gas Law

Ideal Gas Law

https://www.youtube.com/watch?v=WhP6zJbSxec

Combined Gas Law Formula \rightarrow

Scenario One(2:58):

Temperature (T) 313 K

 Pressure (P) ?Volume (v) 95.2 L
$\underset{\substack{\text { of } \\ \text { Amass } \\ \text { (}}}{ }$) 7.5 mol
Scenario One(3:22):
Temperature (T) 313 K
Pressure (P) 3.18 atm

Volume (v) 95.2 L

Amount
of Gas
(n)
?

Importance of R (INCLUDE UNITS-you should have three possible R values)
R when pressure is in atm:
R when pressure is in mmHg :
R when pressure is in kPa :

Ideal Gas Law Practice Problems

https://www.youtube.com/watch?v=TqLIfHBFY08
2.3 moles of He gas are at a pressure of 1.70 atm and the temperature is 410 C . What is the volume of the gas?

At a certain temperature, 3.24 moles of CO2 gas is at 2.15 atm and takes up a volume of 35.285 L . What is the temperature of the gas in oC?

Finding Molar Mass of a Gas

https://www.youtube.com/watch?v=TapRk6E5yr0
A gas sample has a mass of 9.98 g . It's volume is 21.6 L at a temperature of 75.46 oC . The pressure of the gas is 641.0 torr. Determine the gas' molar mass.
(hints, there are 760 torr=1atm, and molar mass is in units of grams/mole)

Molar Volume

https://www.youtube.com/watch?v=Ars7rIMxL4A
Molar volume is determined as the volume occupied by \qquad mole of a gas.

Can be determined by using the formula:
Standard Temperature and Pressure is noted as...
Standard Temperature: \qquad Standard Pressure: \qquad
Determine the molar volume of a gas @ STP:
$P=$ \qquad Solve for V:
$\mathrm{n}=$ \qquad
$R=$ \qquad
$\mathrm{T}=$ \qquad

Daltons Law of Partial Pressure

https://www.youtube.com/watch?v=RqffPYOoxd8

Effusion and Diffusion

https://www.youtube.com/watch?v=VO41-8J254Q
What is diffusion?

What is effusion?

How does molar mass play affect the rates of which molecules diffuse: \qquad molecules tend to have lower (slower) rates. This means that \qquad molecules have higher (faster) rates.

