\qquad Solutions and Gas Laws Study Guide
Solutions

1. Define solvent, solute, and solutions.

Solute plied in subvent to make solution
2. How does the temperature affect the solubility of gases? What about pressure?
high temp. = Low solubility; high pressure $=$ high
Think of a bottle of pop!.
3. What is Henry's Law?

Solubility of a gs based on pressure exerted above a liquid. (passe)
4. If the solubility of a gas in water is $0.77 \mathrm{~g} / \mathrm{L}$ at 3.5 atm of pressure what is the solubility in 1.0 atm of pressure?

$$
\frac{S_{1}}{P_{1}}=\frac{S_{2}}{P_{2}} \frac{x}{3.5 a+m}<\frac{x}{1 \mathrm{~atm}} \quad 0.22 \mathrm{~g} / \mathrm{L}
$$

5. Contrast Immiscible vs. Miscible? What is an emulsifier? Polar non po lar end, Immiscible-substanues not soluble. attracts both Miscible - Surtanes soluble (ike difloles to make
6. C .
7. Calculate the molarity of a solution that contains 156 L of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in
8. How much water should be added to 5.00 g of KCl to prepare a 0.500 m solution?

$$
\begin{aligned}
& m=\frac{\text { mole solute }}{\mathrm{kg} \text { solvent }} \\
& m=\frac{m \text { I } ~ \text { solute }}{\text { wa solvent }}
\end{aligned}
$$

$\mathrm{Kg}_{8!} \mathrm{H}_{2} \mathrm{O}=$? ?

$$
\begin{gathered}
x=0.14 \mathrm{Kg} \\
H_{2} \mathrm{O}
\end{gathered}
$$

alcohol.

$$
0.06 \mathrm{k}=0.12 \mathrm{~m}
$$

$$
\frac{15 \mathrm{~g}}{253.8 \mathrm{~g}}=0.0 \mathrm{~mol} \quad 0.500 \mathrm{~kg}
$$

9. Calculate the mole ratio for each substance. A solution is composed of 45 g of
${ }^{3} \mathrm{CaCl} 2$ dissolved in 150 mL of water. $11098 \mathrm{~g} \quad 150 \mathrm{~mL}=15 \mathrm{~g}$
Nil. Substance X

$$
\text { total moles: } \frac{45}{110.98}=0.41 \mathrm{~mol} \mathrm{CaCl} 2
$$

$8.33+0.41=8.74$ total moles

$$
\left.\begin{array}{l}
\frac{150 \mathrm{~g}}{18 \mathrm{~g}}=8.33 \mathrm{~mol}+20 \\
\text { of solution to make a } 5 \% \mathrm{KI} \\
\rightarrow 1,000,000 \mathrm{~mL} \\
=
\end{array} \begin{array}{l}
\frac{0.41}{8.74}=0.0 \mathrm{~S} \\
8.33 \\
\frac{8.74}{8.74}=0.95 \\
\mathrm{H}_{2} \mathrm{Cad}
\end{array}\right]
$$

$$
1000000 \mathrm{~L} \rightarrow 1,000,000 \mathrm{~mm}
$$

$$
\pi_{0} \text { conc. }=\left(\frac{\text { mass/volumex }}{\text { total masstrodume }}\right) \times 100
$$

$$
1,000,000 \mathrm{~g}
$$

$$
\begin{array}{r}
S=\left(\frac{x}{1,000,000}\right) \times 100 \\
x=50,000 \mathrm{~g}^{k \prime}
\end{array}
$$

Colligative Properties

1. A property that depends on the number of solute particles (concentration) is said to be a Colligative property.
2. List 3 examples of colligative properties:
a. Freezing Point Depression
b. Boiling Point Elevation
c. osmotic pressure
3. What colligative property is responsible for keeping water from freezing in a car's cooling system? boiling
4. List the van't Hoff factor and explanation for the following:

5. What is the boiling point of a 1.50 m NaCl solution? (ionic)

$$
\begin{aligned}
& D T=m \cdot i \cdot k=(1.5)(2)(0.52)=1.56^{\circ} \mathrm{C} \\
& \quad 100+1.56=101.56^{\circ} \mathrm{C} \\
& \text { 6. What is the new freezing and boiling point of water if } 50 . \mathrm{g} \text { of e }
\end{aligned}
$$

6. What is the new freezing and boiling point of water if 50 . g of ethylene glycol \leqslant solute (MW $=62.07 \mathrm{~g} / \mathrm{mol}$) is added to 50 g of water? K_{L} solvent $i=1$
$\frac{50 g}{62.07 g}=0.81$ moles
7. What is the freezing point of a solution of 12.0 g of CCl_{4} dissolved in $750 . \mathrm{g}$ of benzene? The freezing point of benzene is $5.48^{\circ} \mathrm{C} ; \overline{\mathrm{K}_{\mathrm{f}}}$ is $5.12^{\circ} \mathrm{C} / \mathrm{m}$.

$$
\frac{12 \mathrm{~g}}{153.8 \mathrm{gg}}=\frac{0.08 \mathrm{mel}}{\mathrm{CCl}_{4}}
$$

$$
\begin{aligned}
& m=\frac{0.08}{0.750}=0.104 \mathrm{~m} \\
& \Delta T_{F}=(0.104)(1)(5.12)=0.53^{\circ} \mathrm{C} \quad \begin{array}{l}
4548 \\
-.53 \\
4.95
\end{array}
\end{aligned}
$$

8. When 5.0 g of a covalent compound is added to 35 g of water the new freezing
point is $-2.5^{\circ} \mathrm{C}$. What is the molecular mass of the unknown compound?
in

$$
\begin{aligned}
& 2.5=m(1)(1.86) \\
& 1.34=m
\end{aligned}
$$

$$
\begin{aligned}
1.34 & =\frac{x}{0.025 \mathrm{kgH}_{2} 0} \\
x & =0.034 \mathrm{~mol} 5(\mathrm{~g} / \mathrm{mol})
\end{aligned}
$$

$$
\frac{5 \mathrm{~g}}{0.034_{\mathrm{mbi}}}=147 \mathrm{~g} / \mathrm{mol}
$$

$625 \mathrm{mmHg}=0.8224 \mathrm{~atm}$.

Gas Laws
Fill in the following Gas Laws:
Charles' Law: $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
Boyle's Law: $P_{1} \mathcal{V}_{1}=P_{2} V_{2}$
Gay-Lussac's Law: P_{1}, P_{2}
Combined Gas Law: $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$

1. A given mass of air has a volume of 6.00L at 10fkpa. What volume will it occupy at 25.0 kPa if the temperature does not change?

$$
P_{1} V_{1}=P_{2} V_{2}
$$

$$
\begin{aligned}
& P_{1} V_{1}=P_{2} V_{2} \\
& (101)(6)=(25) V_{2}
\end{aligned} \quad V_{2}=24.24 \mathrm{~L}
$$

2. A balloon filled room at $24^{\circ} \mathrm{C}$ has a volume of 4.00 L . The balloon is then heated to a temperature of $58^{\circ} \mathrm{C}-33 \mathrm{kT}=297 \mathrm{~K}$

$$
\frac{v_{1}}{T_{1}}=\frac{v_{2}}{T_{2}} \quad \frac{4}{297}=\frac{x}{331}+46
$$

3. Complete the following table for an ideal gas;

$\mathrm{P}(\mathrm{atm})$	$\mathrm{V}(\mathrm{L})$	$\mathrm{n}(\mathrm{mol})$	T
5.00	A	2.00	$155^{\circ} \mathrm{C} \rightarrow 4$
0.300	2.00	B	155 K
4.47	25.0	2.01	C
D	2.25	10.5	$75^{\circ} \mathrm{C} \rightarrow 348 \mathrm{~K}$

\qquad 0.047 mol
$c=677 \mathrm{~K}$
$\mathrm{D}=$ \qquad 133 atm. 0.0598 L

$$
n=\frac{g}{m N}
$$

4. 0.322 -g of an unknown gas was collected. The gas had a volume of $59.8-\mathrm{mL}$ a pressure of 655 mm Hg and a temperature of $52^{\circ} \mathrm{C}$. What is the molar mass of the gas? $\mathrm{mw}=16 \mathrm{deg} / \mathrm{mol}$

$$
P=\frac{9}{m \omega} R T \quad \begin{array}{ll}
\text { pressure of } 655 \mathrm{~mm} \mathrm{Hg} \text { and a temperature } \\
\hline 0.862 \mathrm{~atm} & 0.862(.0598)
\end{array}=\frac{0.322}{m \omega}(0.0821)(325)
$$

5. $324-\mathrm{mL}$ of oxygen is collected over water at $685-\mathrm{mmHg}$ and $18^{\circ} \mathrm{C}$. It is released when hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ decomposes. It also forms water. How many grams of hydrogen peroxide decomposed?
0.901 atm .

$$
.3242
$$

$$
291 \mathrm{~K}
$$

$$
\begin{aligned}
& (0.901)(0.324)=n(0.0821)(291) \\
& n=(0.012 \operatorname{mol} 5)(34)=41 \mathrm{gg}_{2} \mathrm{H}_{2} \mathrm{O}_{2}
\end{aligned}
$$

1. In your own words, state Dalton's Law of Partial Pressures.
individual pressures add up to total pressure.
2. The partial pressure of helium is 13.5 kPa in a mixture of helium, oxygen, and methane gases. If the total pressure is 96.4 kPa and the partial pressure of oxygen is 29.3 kPa , what is the partial pressure of methane gas?

$$
96.4=13.5+29.3+P_{c+4} \quad P_{\mathrm{CH}_{4}}=53.6 \mathrm{kPa}
$$

3. Determine the partial pressure of oxygen collected over water if the temperature is $28^{\circ} \mathrm{C}$ and the total gas pressure is 98.74 kPa . (Vapor pressure of water at $28^{\circ} \mathrm{C}$ is 3.8 kPa)

$$
98.74=3.8+P_{0}
$$

4. A mystery gas effuses 4.0 times. faster tina oxygen. What is likely the identity of . the mystery gas? (Hint, find the molar mass)

$$
\begin{aligned}
\frac{4}{1} & =\sqrt{\frac{32}{x}} \\
\frac{16}{1} & =\frac{32}{x} \\
x & =2 \text { glmol } 80 \text { th gas }
\end{aligned}
$$

(6) They gave you the mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$. Use it to find the moles.

$$
\begin{aligned}
& \text { given } \rightarrow \frac{65 \mathrm{~g}}{1 \text { mole } C_{0} H_{12} O_{6}} \rightarrow 180 \mathrm{~g}
\end{aligned}=0.36 \text { moles }
$$

The gave you liters of water. Thisisonly the solvent. You need liters of the whole solution. so convert 65 g to L .

$$
\begin{aligned}
1 g & =1 \mathrm{~mL} \\
65 \mathrm{~g} & =65 \mathrm{~mL} \\
& =\frac{1.56 \mathrm{~L}}{1.625 L} \text { of water solution }
\end{aligned}
$$

$$
M=\frac{\text { moles of solute }}{\text { Liters of solution }}=\frac{0.36}{1.625}=0.22 \mathrm{M}
$$

(7) They gave mass of KCl . Use this to find mole of KCl . $\underset{\text { given } \longrightarrow}{\longrightarrow} \frac{5 \mathrm{~g}}{1 \text { mole } \mathrm{KCl} \longrightarrow 74.5 \mathrm{gg}}=0.07$ moles

They al so tell you it's a 0.500 m solution. This is molality (see the little m). So wine looking for the ant. of water which is the Kg of solvent.

$$
\begin{aligned}
m=\frac{\text { mole solute }}{\mathrm{Kg} \text { of solent }} \quad \times(0.500) & =\left(\frac{0.07}{\nless}\right) \times \\
\frac{0.500 x}{0.500} & =\frac{0.07}{0.500} \\
x & =0.14 \mathrm{Kg} \mathrm{H} \mathrm{H} \mathrm{O}
\end{aligned}
$$

(8) They gave you 15 g of 1_{2}. use this to solve for moles of 1_{2}.

$$
\underset{\text { given } 12 \longrightarrow 25.8 \mathrm{~g}}{1 \text { mole }}=0.06 \text { moles }
$$

They gone you mass of alcohol in grams. Convert to kg .

$$
m=\frac{\text { mole solute }}{\mathrm{Kg} \text { solvent }}=\frac{0.06}{0.50}=0.12 \mathrm{~m}
$$

(9) Given 4 Sg of CaCl_{2}, determine moles.

$$
\begin{aligned}
& \text { given } \rightarrow \frac{45 g}{}=0.41 \text { moles } \\
& 1 \mathrm{molCaCl} \longrightarrow 110.98 \mathrm{~g}
\end{aligned}
$$

Given 150 mL water, convert to grams then determine moles.

$$
\begin{aligned}
& 1 \mathrm{~mL}=1 \mathrm{~g} \\
& 150 \mathrm{~mL}=150 \mathrm{~g}
\end{aligned} \underset{1 \mathrm{~mol}+\mathrm{L} 2 \mathrm{O} \longrightarrow 18 \mathrm{~g}}{\text { given }} \frac{150 \mathrm{~g}}{18.33 \text { moles. }}=0.3
$$

$$
\begin{aligned}
& \text { move fraction }=\frac{\text { moles of substances }}{\text { total moles }} \quad 8.33+0.41=8.74 \\
& \begin{array}{l}
\text { total. } \\
\text { moles. }
\end{array}
\end{aligned}
$$

$$
\mathrm{CaCl}_{2}: \frac{0.41}{8.74}=0.05 \quad \mathrm{H}_{2} \mathrm{O}^{\prime} \cdot \frac{8.33}{8.74}=0.95
$$

(10) This is percent concentration. They gave you percent. 5 \% ki.
Then gave you 1000L solution, which is volume. You wart mass of KI so convert $1000 \mathrm{~L} \rightarrow \mathrm{~g}$.

$$
\begin{aligned}
1000 \mathrm{~L} \rightarrow 1,000,000 \mathrm{~mL} & =1,000,000 \mathrm{~g} \\
\sigma & =(x) \times 100
\end{aligned}
$$

$$
\begin{aligned}
q_{0}=\left(\begin{array}{l}
\left.\frac{\text { mass of } x}{\text { total mass }}\right) \times 1000 \mathrm{~L} \\
1,00
\end{array}\right. & =\frac{\left(\frac{x}{1,000,000}\right) \times 100}{100} \\
1,000,000 \times . \tau 5 & =\frac{x}{1,000,060} \times 1,000 / 1000 \\
x & =50,000 \mathrm{~g} \mathrm{K1}
\end{aligned}
$$

Colligating Prop.
(5) $\Delta T=m \cdot i \cdot K$

$$
K_{f}=1.86 \quad K_{b}=0.52
$$

of 1.50 m NaCl

个
molality
$\mathrm{NaCl} \rightarrow \mathrm{Na}+\mathrm{Cl}$

$$
i=2
$$

use k_{p}

$$
\Delta T=(1.50)(2)(6.52)=1.56^{\circ} \mathrm{C}
$$

Boiling Pt. Elevation
so add number to

$$
100+1.56=\frac{100^{\circ} \mathrm{C}}{101.56^{\circ} \mathrm{C}}
$$

(6) Ethylene glycol is covalent bal non-metals). ic

Need to determine molality ty.
Ethylene glycol is the solute

$$
\underset{1 \text { move } \rightarrow 62.07 \mathrm{~g}}{\text { give } \rightarrow} \frac{50 \mathrm{~g}}{62.81 \text { moles }}
$$

Eliven $S D g$ of water 180 men t), convert to kg

$$
\begin{aligned}
& m=\frac{0.81}{0.05}=16.2 \mathrm{~m}
\end{aligned}
$$

$$
\begin{gathered}
\Delta T_{B P}=(16.2)(1)(0.52)=8.42^{\circ} \mathrm{C}+100=108.42^{\circ} \mathrm{C} \\
\Delta T_{F P}=(16.2)(1)(1.86)=30.1^{\circ} \mathrm{C} \\
\quad 0-30.1^{\circ} \mathrm{C}=-30.1^{\circ} \mathrm{C}
\end{gathered}
$$

FP Deprastionn
(B) $A T=m \cdot i \cdot k \quad i=1$ because it is a covalent compound.

$$
\begin{aligned}
& \frac{2.5}{1.86}=\frac{m+4(1.86)}{1.86} \\
& m=1.34 \\
& m=\frac{m \mathrm{~kg}}{\mathrm{~kg}} \xrightarrow{0.025}(1.34)=\left(\frac{x}{0.025}\right) 0.025 \\
& .35 \mathrm{~g} \mathrm{H} 2 \mathrm{O} \rightarrow 0.025 \mathrm{~kg} \\
& x=0.034 \text { moles } \\
& \downarrow \\
& \frac{5 \mathrm{~g}}{0.034 \mathrm{~mol}}=147 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

