### Science Starter

Convert 2260 J/g H<sub>2</sub>O into kJ/mol.

### **Energy and Phase Changes**

**Arbor Prep Chemistry** 

## Phase Changes

What happens to the temperature of a block of ice when you put a Bunsen burner underneath it? You might think that the temperature goes up smoothly, but that's not what happens. The graph of temperature against time is called a heating curve. Let's look at the heating curve for water.



# **Energy Changes**



Energy

## Phase Changes

- In the graph, the flat areas are the areas that are undergoing the phase changes.
  - The H<sub>fus</sub> is the energy needed to either melt or freeze water. Water needs 334 J to melt one gram of ice.
  - The H<sub>vap</sub> is the energy needed to either vaporize or codense water. Water needs 2260 J to vaporize one gram of ice.
- Liquid water has a specific heat of 4.184J/g°C.
- Steam has a specific heat of 2.00 J/g°C
- Solid Ice has a specific heat of 2.06 J/g°C

## Phase Changes with Energy





#### Review

- ReCAP!!!
  - $q=mC_p\Delta T$  when there is NO phase change (slanted line)
    - BE SURE TO USE THE CORRECT C<sub>p</sub>!!!
  - $q = \Delta H(amount)$  for phase changes
    - BE SURE TO USE THE CORRECT △H!!!
- Slanted lines indicate a change in the KE.
  - Increase to the right and Decrease to the left
- Phase changes indicate a change in PE.
  - Increase to the right and Decrease to the left

#### Practice #1

Calculate how many Joules of energy would be required to change 32.9 g of water at 35°C to steam at 120°C. You will need to break this problem into four steps. Use the diagram to assist you.



#### Practice #2

How much heat energy would be required to change the temperature of 125g of ice from -32.9°C to liquid water at 75°C?

#### Practice #3

How much energy (in kJ) is required to melt 150.0 g of –18.00°C ice, and bring the resulting liquid water up to 25.00°C?

#### STAMP IT!!!

How much energy is required or released to ...

Melt 15 g of ice at 0°C and heat the water to 22°C?

Cool and freeze 5150 kg of water from 25.0°C to
-4.00°C