Science Starter

Convert $2260 \mathrm{~J} / \mathrm{g} \mathrm{H}_{2} \mathrm{O}$ into $\mathrm{kJ} / \mathrm{mol}$.

Energy and Phase Changes

Arbor Prep Chemistry

Phase Changes

What happens to the temperature of a block of ice when you put a Bunsen burner underneath it? You might think that the temperature goes up smoothly, but that's not what happens. The graph of temperature against time is called a heating curve. Let's look at the heating curve for water.

Energy Changes

Energy

Phase Changes

- In the graph, the flat areas are the areas that are undergoing the phase changes.
- The $\mathrm{H}_{\text {fus }}$ is the energy needed to either melt or freeze water. Water needs 334 J to melt one gram of ice.
- The $\mathrm{H}_{\text {vap }}$ is the energy needed to either vaporize or codense water. Water needs 2260 J to vaporize one gram of ice.
- Liquid water has a specific heat of $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.
- Steam has a specific heat of $2.00 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
- Solid Ice has a specific heat of $2.06 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

Phase Changes with Energy

Energy

Review

- ReCAP!!!
- $q=m C_{p} \Delta T$ when there is NO phase change (slanted line)
- BE SURE TO USE THE CORRECT C_{p} !!!
- $q=\Delta H$ (amount) for phase changes
- BE SURE TO USE THE CORRECT $\Delta H!!!$
- Slanted lines indicate a change in the KE.
- Increase to the right and Decrease to the left
- Phase changes indicate a change in PE.
- Increase to the right and Decrease to the left

Practice \#1

Calculate how many Joules of energy would be required to change 32.9 g of water at $35^{\circ} \mathrm{C}$ to steam at $120^{\circ} \mathrm{C}$. You will need to break this problem into four steps. Use the diagram to assist you.

Practice \#2

How much heat energy would be required to change the temperature of 125 g of ice from $-32.9^{\circ} \mathrm{C}$ to liquid water at $75^{\circ} \mathrm{C}$?

Practice \#3

How much energy (in kJ) is required to melt 150.0 g of $-18.00^{\circ} \mathrm{C}$ ice, and bring the resulting liquid water up to $25.00^{\circ} \mathrm{C}$?

STAMP IT!!!

How much energy is required or released to ...

- Melt 15 g of ice at $0^{\circ} \mathrm{C}$ and heat the water to $22^{\circ} \mathrm{C}$?
- Cool and freeze 5150 kg of water from $25.0^{\circ} \mathrm{C}$ to $-4.00^{\circ} \mathrm{C}$

