Science Starter

• Determine the mass of $3.64 * 10^{23}$ particles of Na.

Energy and Heat

Chemistry-Arbor Prep

What is Thermochemistry?

- Thermochemistry is the study of energy associated with chemical reactions and state changes.
 - The energy stored in chemical bonds (intra and inter) is said to be potential energy.
- We can study thermochemistry by calculating the heat (q), by the temperature change of a substance(s)
 NOTE: HEAT IS NOT TEMPERATURE! Heat is determined by a temperature change.

Heat flows from a warm object to a cold one.

- System: part of the universe that you are paying attention to.
- Surroundings: everything else.
- The law of conservation of energy states that energy can't be created or destroyed. If a system loses energy, the universe gains it.

Endo Vs Exothermic

- In thermochemistry, reactions are defined as endothermic or exothermic.
 - Endothermic processes absorbs heat and the surroundings cool.
 - The q value for exothermic processes is positive.
 - le: cold packs
 - Exothermic processes release heat and the surroundings warm.
 - The q value for exothermic processes is negative.
 - le: body warmth

Energy Calculations

- Heat energy can be calculated in two different units, the calorie and the joule.
 - There are 4.184 Joules = 1 calorie
 - The <u>Calories</u> on the box of cereal are kilocalories.
- The heat capacity of an object is the energy required to increase the temperature of a substance up 1°C.
 - There is a <u>specific heat</u> capacity which is the amount of energy needed to raise the temperature of 1 gram of a substance up 1°C. The units are J/(g°C)

Table of Specific Heats

Specific Heats of Some Common Substances

Substance	Specific Heat	
	J/(g∙°C)	cal/(g∙°C)
Water	4.18	1.00
Grain alcohol	2.4	0.58
lce	2.1	0.50
Steam	1.7	0.40
Chloroform	0.96	0.23
Aluminum	0.90	0.21
Iron	0.46	0.11
Silver	0.24	0.057
Mercury	0.14	0.033

Formula Using Specific Heat

$q = m \cdot C_p \cdot \Delta T$

q is the heat energy (either in cal or joules) C_p is the specific heat ΔT is the temperature

m is the mass

Algebra Review

- Rearrange the formula from the previous box to solve for the <u>heat capacity</u> (mass $* C_p$)

 Rearrange the formula from the previous box to solve for the <u>specific heat capacity</u> (C_p)

Practice Problems

The temperature of a 95.4-g piece of copper increases from 25.0°C to 48.0°C when the copper absorbs 849 J of heat. What is the specific heat of copper?

When 435 J of heat is added to 3.4 g of olive oil at 21°C, the temperature increases to 85°C. What is the specific heat of the olive oil?

How much heat is required to raise the temperature of 250.0 g of mercury 52°C?

Practice Problems

Using calories, calculate how much heat 32.0 g of water absorbs when it is heated from 25.0°C to 80.0°C. How many joules is this?

STAMP IT!!!

A chunk of silver has a heat capacity of 42.8 J/°C and a mass of 181 g. Calculate the specific heat of silver.